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Abstract

A parallel, fully coupled, nonlinearly implicit Newton–Krylov–Schwarz algorithm is proposed for the numerical sim-
ulation of a magnetic reconnection problem described by a system of resistive Hall magnetohydrodynamics equations
in slab geometry. A key component of the algorithm is a restricted additive Schwarz preconditioner defined for problems
with doubly periodic boundary conditions. We show numerically that with such a preconditioned nonlinearly implicit
method the time step size is no longer constrained by the CFL number or the convergence of the Newton solver. We report
the parallel performance of the algorithm and software on machines with thousands of processors.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Magnetic reconnection is an important process in magnetically confined plasmas and has been observed
both in space plasmas and in laboratory experiments [2,14,26]. Experimental investigations of the magnetic
reconnection are often difficult and numerical simulations are becoming increasingly useful for reconnection
studies. Mathematically, the reconnection can be described by a system of magnetohydrodynamics equations
(MHD) [18], where plasma is treated as a conducting fluid satisfying the Navier–Stokes equations augmented
by the electromagnetic terms such as the Lorentz force. Solving the MHD equations numerically is a challenge
because of the complex, not yet fully understood behavior of the solution. The system admits phenomena such
as Alfvén waves and their instabilities, and one of the intrinsic features of the system is the formation of a
nearly-singular current density sheet [31], which is linked to the reconnection of magnetic field lines.
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During the process of magnetic reconnection, the magnetic field configuration undergoes a topological rear-
rangement that results in conversion of magnetic energy into kinetic flow energy and heat over a relatively
short period of time. In the strictly ideal MHD limit, magnetic field lines are ‘‘frozen’’ into the plasma and
magnetic reconnection cannot occur. Capturing the change of the magnetic field topology requires a more gen-
eral model than the ideal MHD [27]. In this paper, we focus on a resistive Hall MHD model for the magnetic
reconnection.

In order to simulate this multi-scale, multi-physics phenomenon, a robust solver is needed to deal with the
high degree of nonlinearity and the non-smooth, nearly-singular behavior in the system. One of the popular
approaches to the numerical solution of the MHD system is based on the splitting of the system into two parts,
where equations for the current and the vorticity are advanced in time, and the corresponding potentials are
obtained by solving Poisson-like equations in a separate step. In such an explicit approach, to satisfy the Cou-
rant–Friedrichs–Lewy (CFL) condition, the time step may become very small, especially in the case of fine
meshes.

Recently, several implicit methods have been introduced in order to overcome the time step size issue. For
example, in [10,11], implicit nonlinear solvers are proposed as solution methods for systems of reduced and
reduced Hall MHD equations in two-dimensional space. The solver is a matrix-free Newton–Krylov method
with a physics-based preconditioner. Excellent results with large time steps are reported based on single pro-
cessor calculations. In [28], a fully parallel, conservative, nonlinearly implicit numerical method is proposed
for the integration of the single-fluid resistive MHD system of equations, where a variant of the matrix-free
Newton–Krylov method, without preconditioning, is used in conjunction with an adaptive time integration
scheme and variable spatial discretization accuracy. In this approach, the time step is not restricted by the
CFL, but is restricted to some extent by the nonlinear solver as the time step needs to be cut when the unpre-
conditioned GMRES is unable to solve the Jacobian system.

In our paper, we develop a fully parallel nonlinearly implicit method based on a high-order time integration
scheme, an inexact Newton’s method with an explicitly calculated Jacobian matrix, and a Krylov subspace
linear solver with a restricted additive Schwarz preconditioner defined on overlapping subdomains. We show
numerically that this approach allows large time steps that are not restricted by the CFL or the linear/nonlin-
ear solvers and works well on machines with thousands of processors. The MHD system that we consider has
four equations: two linear elliptic and two nonlinear and time dependent. We take a ‘‘fully coupled’’ approach
such that no operator splitting is applied to the system of MHD equations. Note that most existing
approaches are based on some form of operator splitting which considers the unknowns of a single physical
variable across all mesh points as a subproblem.

We first apply a second- or third-order implicit time integration scheme, and then, to guarantee the
nonlinear consistency, we use a Newton–Krylov–Schwarz algorithm to solve the large sparse nonlinear
system of algebraic equations containing all physical variables at every time step. In a Newton–Krylov–
Schwarz algorithm, a system is solved by applying outer Newton iterations, whose Jacobian systems
are solved with a preconditioned Krylov subspace method, where the preconditioning is accomplished
via the parallel Schwarz technique. An explicit algorithm is used to compare the results obtained with
the implicit approach. Both implementations are based on the PETSc (Portable Extensible Toolkit for Sci-
entific computation) [1] library thus providing a convenient test bed for investigations of parallel proper-
ties of the algorithms. We focus on scalability studies on fine meshes and on machines with thousands of
processors.

The remainder of this paper is organized as follows. In Section 2, we discuss the model MHD problem and
provide some useful definitions. Spatial and temporal discretizations are covered in Section 3. Algorithmic
details are described in Sections 4 and 5, and numerical results are reported in Section 6. The paper is con-
cluded in Section 7.
2. Model MHD problem

The system of equations we model can be derived starting from the momentum transfer equations. Follow-
ing [3,16], we can write
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nme
oVe

ot
þ ðVe � $ÞVe

� �
¼ �$pe � neðEþ Ve � BÞ þ mer2Ve þ negj ð2:1Þ
for the species of electrons and
nmi
oVi

ot
þ ðVi � $ÞVi

� �
¼ �$pi þ neðEþ Vi � BÞ þ mir2Vi � negj ð2:2Þ
for the species of ions. In (2.1) and (2.2), the plasma is considered to be quasi neutral, ions are singly charged,
ion/electron number density is n, the resistivity is g, the ion/electron viscosity is given by mi,e, E is the electric
field strength, B is the magnetic induction, j is the current density, mi,e is the ion/electron mass, Vi;e is the ion/
electron velocity, and pi,e is the ion/electron pressure. Additionally, we can introduce
neðVi � VeÞ � j: ð2:3Þ

Maxwell’s equations enter the picture via the following three equations:
$ � B ¼ 0; ð2:4Þ
$� B ¼ l0j; ð2:5Þ

$� E ¼ � oB

ot
: ð2:6Þ
(2.1)–(2.6) provide a full description of the plasma, given certain assumptions on pi,e. The incompressibility
condition
$ � Vi;e ¼ 0 ð2:7Þ

is added if the plasma is considered incompressible.

The above equations can be viewed as the general description of plasma in the magnetohydrodynamics for-
malism. Special workable systems of equations may be obtained by employing reduction procedures, where
certain relative magnitude ordering schemes are introduced for such physical quantities as pressure and the
magnetic field induction. For example, in [15], where a magnetized, two-species (electron and ion), quasi neu-
tral plasma with singly charged ions of mass mi and a constant, uniform number density n0 is considered, the
reduction procedure is used to obtain systems of equations corresponding to ‘‘high-’’, ‘‘low-’’ and ‘‘zero-’’ b
approximations with the dimensionless b, which is defined as the ratio of the plasma pressure to the magnetic
field pressure [15]. In the derivation, a normalization scheme is adopted [16], such that all lengths are measured
in terms of some scale a, all magnetic fields are measured in terms of some scale B0, all velocities in terms of
characteristic Alfvén speed V A ¼ B0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0n0mi
p

, and all pressures in terms of B2
0=l0. By introducing the stream

functions / and w, one can write B ¼ $w� ẑþ Bzẑ and Vi ¼ ẑ� $/þ V zẑ, where B is the magnetic induction,
Vi is the ion velocity, Bz and Vz are the magnetic field and ion velocity in z-direction, respectively. Further-
more, other quantities such as vorticity and the current density are expressed as U ¼ r2/ and j ¼ �r2w using
the stream functions. In this paper we work with a model MHD problem described in [4,19], which also cor-
responds to the strongly-magnetized, ‘‘zero-b’’ case in [15]:
r2/ ¼ U ;

r2w ¼ 1
d2

e
ðw� F Þ;

oU
ot þ ½/;U � ¼ 1

d2
e
½F ;w� þ mr2U ;

oF
ot þ ½/; F � ¼ q2

s ½U ;w� þ gr2ðw� w0Þ;

8>>>>><
>>>>>:

ð2:8Þ
where U is the vorticity, F is the canonical momentum, / and w are the stream functions for the vorticity and
current density, respectively, m is the plasma viscosity, g is the normalized resistivity, de ¼ c=xpe is the inertial
skin depth, qs is the sound ion Larmor radius [19], and w0 is the equilibrium component of w that is defined
below. The current density is obtained via j ¼ ðF � wÞ=d2

e . The Poisson bracket is defined as
½A;B� � ðoA=oxÞðoB=oyÞ � ðoA=oyÞðoB=oxÞ.

For the case we wish to study every variable in the system is assumed to be the sum of an equilibrium and a
perturbation component; i.e. / ¼ /0 þ /1, w ¼ w0 þ w1, U ¼ U 0 þ U 1, and F ¼ F 0 þ F 1, where /0 ¼ U 0 ¼ 0,
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w0 ¼ cosðxÞ, and F 0 ¼ ð1þ d2
eÞ cosðxÞ are the equilibrium components [26]. After substitutions, we arrive at

the following system for the perturbed variables:
r2/1 ¼ U 1;

r2w1 ¼ 1
d2

e
ðw1 � F 1Þ;

oU1

ot þ ½/
1;U 1� ¼ 1

d2
e
½F 1;w1� þ mr2U 1 þ 1

d2
e

ow1

oy F eqx þ oF 1

oy Beqy

� �
;

oF 1

ot þ ½/
1; F 1� ¼ q2

s ½U 1;w1� þ gr2w1 þ o/1

oy F eqx þ q2
s

oU1

oy Beqy

� �
;

8>>>>>><
>>>>>>:

ð2:9Þ
where F eqx ¼ �ð1þ d2
eÞ sinðxÞ and Beqy ¼ sinðxÞ. The system is defined on a rectangular domain

X � ½lx; ly � � ½2p; 4p�, and doubly periodic boundary conditions are assumed. For initial conditions, we
use a non-zero initial perturbation in /1 and a zero initial perturbation in w1. The exact form of the per-
turbation follows after some useful definitions. The aspect ratio is � ¼ lx=ly . The magnitude of the pertur-
bation is scaled by n ¼ 10�4. We define ~de ¼ maxfde; qsg and c ¼ �~de. For the initial value of the /
perturbation we use
/1ðx; y; 0Þ ¼

n c
�
erf xffiffi

2
p

~de

� �
sinð�yÞ if 0 6 x < p

2

�n c
�
erf x�pffiffi

2
p

~de

� �
sinð�yÞ if p

2
6 x < 3p

2

n c
�
erf x�2pffiffi

2
p

~de

� �
sinð�yÞ if 3p

2
6 x 6 2p:

8>>>><
>>>>:

ð2:10Þ
Other field quantities are set as U 1ðx; y; 0Þ ¼ r2/1ðx; y; 0Þ and F 1ðx; y; 0Þ ¼ w1ðx; y; 0Þ � der2w1ðx; y; 0Þ. From
now on, we drop the superscript and assume that the four fields /, w, U and F represent the perturbed com-
ponents only. In (2.9) two of the equations are time independent and linear; another two equations are time
dependent and nonlinear. Solving (2.9) numerically is the focus of this paper.
3. Discretizations

In this section, we describe some nonlinearly implicit discretization schemes for solving (2.9). We cover the
computational domain with a uniform fMx;Myg mesh, and the corresponding mesh sizes are hx ¼ 2p=Mx and
hy ¼ 4p=My , respectively. Standard second-order central finite difference methods are used for all the spatial
derivatives. For the time derivatives, we use a fixed time step Dt throughout the computation and we imple-
ment two time integration schemes of orders 2 and 3. At time level tk, we denote the grid values of the
unknown functions /ðx; y; tÞ, wðx; y; tÞ, Uðx; y; tÞ, and F ðx; y; tÞ, as /k

i;j, wk
i;j, Uk

i;j, and F k
i;j.

For each grid point, the equilibrium values are given as
F eqxði; jÞ ¼ �ð1þ d2
eÞ sinðhxiÞ; ð3:1Þ

Byeqði; jÞ ¼ sinðhxiÞ: ð3:2Þ
Eq. (3.1) corresponds to the F’s x-equilibrium field component and Eq. (3.2) corresponds to B’s y-equilibrium
component. At time level k, the stream function components are expressed as (ignoring the k index):
Rk
/ði; jÞ �

/iþ1;j � 2/i;j þ /i�1;j

h2
x

þ
/i;jþ1 � 2/i;j þ /i;j�1

h2
y

� Ui;j ¼ 0 ð3:3Þ
and
Rk
wði; jÞ � wi;j � d2

e

wiþ1;j � 2wi;j þ wi�1;j

h2
x

þ
wi;jþ1 � 2wi;j þ wi;j�1

h2
y

 !
� F i;j ¼ 0: ð3:4Þ
The spatial components of the other two equations are discretized as
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Rk
U ði; jÞ �

"
vxp

U i;j � Ui�1;j

hx
þ vxm

Uiþ1;j � Ui;j

hx
þ vyp

U i;j � Ui;j�1

hy
þ vym

Ui;jþ1 � Ui;j

hy

� �

� Bxp
F i;j � F i�1;j

hx
þ F eqx

� �
þ Bxm

F iþ1;j � F i;j

hx
þ F eqx

� �
þ Byp

F i;j � F i;j�1

hy

� ��

þBym
F i;jþ1 � F i;j

hy

� ��
=d2

e � m
Uiþ1;j � 2Ui;j þ Ui�1;j

h2
x

þ Ui;jþ1 � 2Ui;j þ Ui;j�1

h2
y

 !#
ð3:5Þ
and
Rk
F ði; jÞ �

"
vxp

F i;j � F i�1;j

hx
þ F eqx

� �
þ vxm

F iþ1;j � F i;j

hx
þ F eqx

� �
þ vyp

F i;j � F i;j�1

hy
þ vym

F i;jþ1 � F i;j

hy

� �

� Bxp
Ui;j � Ui�1;j

hx

� �
þ Bxm

Uiþ1;j � Ui;j

hx

� �
þ Byp

Ui;j � Ui;j�1

hy

� ��

þBym
Ui;jþ1 � Ui;j

hy

� ��
q2

s � g
wiþ1;j � 2wi;j þ wi�1;j

h2
x

þ
wi;jþ1 � 2wi;j þ wi;j�1

h2
y

 !#
: ð3:6Þ
We have used the following notations in the above equations:
vx ¼ �
/i;jþ1 � /i;j�1

2hy
; ð3:7Þ

vy ¼
/iþ1;j � /i�1;j

2hx
; ð3:8Þ

vxp ¼ vxm ¼
vx

2
; vyp ¼ vym ¼

vy

2
; ð3:9Þ
and
Bx ¼
wi;jþ1 � wi;j�1

2hy
; ð3:10Þ

By ¼ �
wiþ1;j � wi�1;j

2hx
þ Byeqði; jÞ; ð3:11Þ

Bxp ¼ Bxm ¼
Bx

2
; ð3:12Þ

Byp ¼ Bym ¼
By

2
: ð3:13Þ
We note that above spatial discretization is second-order accurate. Two of the four equations in (2.9) are time
dependent. As suggested in [23], temporal discretization of higher order often provides for a better solution
accuracy in numerical simulations of fluid dynamics problems, despite the fact that a lower spatial discretiza-
tion order is used. For instance, the temporal discretization may be of order 3 or 4, while the order of the spa-
tial discretization is 2. In this paper, we employ backward differentiation formulas (BDF) [21] for the implicit
methods and Adams formula [21] for the explicit version of our algorithm. Using multistep formulas requires
the solutions from previous time steps. For example, the third-order BDF for system (2.9) with the help of
(3.3)–(3.6) results in
Gkþ1
/ ði; jÞ � Rkþ1

/ ði; jÞ ¼ 0;

Gkþ1
w ði; jÞ � Rkþ1

w ði; jÞ ¼ 0;

Gkþ1
U ði; jÞ � 1

6Dt ð11Ukþ1
i;j � 18Uk

i;j þ 9Uk�1
i;j � 2Uk�2

i;j Þ � Rkþ1
U ði; jÞ ¼ 0;

Gkþ1
F ði; jÞ � 1

6Dt ð11F kþ1
i;j � 18F k

i;j þ 9F k�1
i;j � 2F k�2

i;j Þ � Rkþ1
F ði; jÞ ¼ 0;

8>>>>><
>>>>>:

ð3:14Þ
where ðUk; F kÞ, ðUk�1; F k�1Þ, ðUk�2; F k�2Þ are solutions for ðU ; F Þ obtained at k, k � 1 and k � 2 time steps,
respectively. Therefore, a high-order BDF requires sufficient solution history to be accumulated at the begin-
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Fig. 1. Rectangular domain X ¼ ½0; 2pÞ � ½0; 4pÞ with doubly periodic boundaries and a sample 6� 6 mesh. The solid circles indicate
genuine mesh points while empty circles denote virtual points that correspond to the boundary mesh points on the opposite side of the
domain.
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ning of the time integration process. In our approach, the time integration process begins, starting from an
initial guess at t = 0, with a BDF of order one (backward Euler), gradually increasing the BDF order up
to a desired value as more and more solution history becomes available. For comparison purposes, we also
implement an explicit scheme:
Rkþ1
/ ði; jÞ ¼ 0;

Rkþ1
w ði; jÞ ¼ 0;

Ukþ1
i;j � Uk

i;j � Dt 3
2
Rk

Uði; jÞ � 1
2
Rk�1

U ði; jÞ
� �

¼ 0;

F kþ1
i;j � F k

i;j � Dt 3
2
Rk

F ði; jÞ � 1
2
Rk�1

F ði; jÞ
� �

¼ 0:

8>>>><
>>>>:

ð3:15Þ
The system of PDEs (2.9) is defined on a rectangular domain and doubly periodic boundary conditions are
used [19]. There are several ways to numerically implement the doubly periodic boundary conditions [24],
and we take the so-called ‘‘wraps around’’ approach that is provided as an option in [1], in which the top,
the bottom as well as the left and the right boundaries are glued together. Fig. 1 helps to illustrate the point
by showing an example of the 6 · 6 mesh. The standard five-point-stencil discretization of the PDE centered at
the mesh point number 8 requires corresponding information from four ‘‘neighboring’’ points: 2, 9, 14 and 7.
For the discretization centered at the boundary mesh point 7 the four ‘‘neighboring’’ points are 1, 8, 13 and 12.
In some sense, a system with the periodic boundary conditions is more global than the one with Dirichlet or
Neumann boundaries and this ‘‘globalization’’ may have an impact on the performance of the domain decom-
position [30,32] method used to solve the system of equations.

4. One-level Newton–Krylov–Schwarz methods

At each time step, we compute the solution by solving a system of nonlinear algebraic equations GðEÞ ¼ 0,
which is obtained by putting the finite difference equations (3.14) in a certain order. For some algorithms, the
orderings of unknowns and the finite difference equations are not important, but for our algorithm to work, it
is crucial to order them in the ‘‘fully coupled’’ fashion. More precisely, we define
E ¼ ð/11;w11;U 11; F 11;/21;w21;U 21; F 21; � � � ÞT;

and
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G ¼ ðG/ð1; 1Þ;Gwð1; 1Þ;GU ð1; 1Þ;GF ð1; 1Þ;G/ð2; 1Þ;Gwð2; 1Þ;GU ð2; 1Þ;GF ð2; 1Þ; . . . ÞT;

where the notations of (3.14), ignoring the superscript, are used. With this kind of ordering the four physical
variables at the same mesh points are always together throughout the computations. The mesh points are or-
dered subdomain by subdomain for the purpose of parallel processing. The system is solved with a one-level
Newton–Krylov–Schwarz (NKS) [6,7], which is a general purpose parallel algorithm for solving systems of
nonlinear algebraic equations. The Newton iteration is given as Ekþ1 ¼ Ek � kkJðEkÞ�1GðEkÞ; k ¼ 0; 1; . . .,
where E0 is a solution obtained at the previous time step, JðEkÞ ¼ G0ðEkÞ is the Jacobian at Ek, and kk is
the steplength determined by a linesearch procedure [13]. We mention that another possible nonlinear solver
would be the additive Schwarz preconditioned Newton method [8,22]. Due to doubly periodic boundary
conditions, the Jacobian has a one-dimensional null-space that is removed by projecting out a constant
[25]. The accuracy of the Jacobian solve is determined by some gk 2 ½0; 1Þ and the condition
kGðEkÞ þ JðEkÞskk 6 gkkGðEkÞk. The overall algorithm can be described as follows:

(1) Inexactly solve the linear system JðEkÞsk ¼ �GðEkÞ for sk using a preconditioned GMRES(30) [29].
(2) Perform a full Newton step with k0 ¼ 1 in the direction sk.
(3) If the full Newton step is unacceptable, backtrack k0 using a backtracking procedure until a new k is

obtained that makes Eþ ¼ Ek þ ksk an acceptable step.
(4) Set Ekþ1 ¼ Eþ, go to step 1 unless a stopping condition has been met.

In step 1 above we use a right-preconditioned GMRES to solve the linear system; i.e., the vector sk is
obtained by approximately solving the linear system JðEkÞM�1

k ðMkskÞ ¼ �GðEkÞ, where M�1
k is the one-level

additive Schwarz preconditioner. To formally define M�1
k , we need to introduce a partition of X. We first par-

tition the domain into non-overlapping subdomains Xl, l ¼ 1; . . . ;N , as in Fig. 2. In order to obtain an over-
lapping decomposition of the domain, we extend each subregion Xl to a larger region X0l, i.e., Xl � X0l. Only
simple box decompositions are considered in this paper – all subdomains Xl and X0l are rectangular and made
up of integral numbers of fine mesh cells. The size of Xl is Hx � Hy . The subdomain X0l is not always simply
connected as shown in Fig. 2, however, if we pull all the pieces together so that the subdomain is ‘‘connected’’,
we can more conveniently define the size of X0l as H 0x � H 0y , where the H 0s are chosen so that the overlap, d, is
uniform in the number of fine grid cells all around the perimeter, i.e.,
δ

Ωl

Ωl
’

Hy

Hx

h

y

x

. Decomposition of domain X with an overlap d. The solid lines indicate the partition of the domain into non-overlapping
ctures Xl of size Hx � Hy and the dashed rectangle indicates an overlapping subdomain X0l. The filled rectangles show the formation
xtended boundary subdomain with the doubly periodic domain boundary oX and the incomplete fine mesh of solid lines illustrates
ying uniform subintervals with mesh size h.
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d ¼ ðH 0x � HxÞ=2 ¼ ðH 0y � HyÞ=2 ð4:1Þ
for every subdomain. Note that the boundary subdomains are also extended all around their perimeters be-
cause of the doubly periodic physical boundary condition. On each extended subdomain X0l, we construct a
subdomain preconditioner Bl, whose elements are Bi;j

l ¼ fJ ijg, where the node indexed by ði; jÞ belongs to
X0l. The entry Jij is calculated with finite differences
J ij ¼ 1=ð2aÞðGiðEj þ aÞ � GiðEj � aÞÞ; ð4:2Þ

where 0 < a� 1 is a constant and a graph coloring technique is used to efficiently compute the sparse Jaco-
bian [1,12]. We also compute the entries of the Jacobian matrix using analytical expressions for comparison
purposes. Homogeneous Dirichlet boundary conditions are used on the subdomain boundary oX0l. The clas-
sical additive Schwarz preconditioner [5] can be written as
M�1
k ¼

XN

j¼1

ðRjÞTB�1
j Rj: ð4:3Þ
Let n be the total number of mesh points and n0l the total number of mesh points in X0l. Then, Rd
l is an n0l � n

block matrix that is defined as its 4� 4 block element ðRd
l Þi;j is an identity block if the integer indices 1 6 i 6 n0l

and 1 6 j 6 n belong to a mesh point in X0l, or a block of zeros otherwise. The Rd
l serves as a restriction matrix

because its multiplication by a block n� 1 vector results in a smaller n0l � 1 block vector by dropping the com-
ponents corresponding to mesh points outside X0l. The n0l � n block matrix R0

l is defined similarly with the
exception that its application to a n� 1 vector also zeros components that correspond to the mesh points lay-
ing in X0l n Xl. In this paper we use the left restricted additive Schwarz preconditioner [9] which is given by
M�1
k ¼

XN

j¼1

ðR0
j Þ

TB�1
j Rd

j ; ð4:4Þ
where d is the size of the inter subdomain overlap. The restricted additive Schwarz preconditioner can be inter-
preted as using the residuals from the points in the overlapping region, while discarding the computed values
in the overlapping region. For the problem we are considering the restricted additive preconditioner performs
much better than the classical additive Schwarz preconditioner, especially when the number of processors is
large. Various inexact additive Schwarz preconditioners can be constructed by replacing the matrices Bl in
(4.4) with convenient and inexpensive to compute matrices, such as those obtained with incomplete factoriza-
tions. In this paper we employ the LU factorization.

If the classical Schwarz preconditioner is applied to symmetric positive definite systems resulting from a
discretization of elliptical problems, then the condition number j of the preconditioned system satisfies
j 6 Cð1þ H=dÞ=H 2 for the one-level method and j 6 Cð1þ H=dÞ for the two-level method, where C is inde-
pendent of h, H and d. In the above formulation H is the effective subdomain diameter. The factor 1=H 2, asso-
ciated with the number of subdomains on the fine level, lends itself to an increase in numbers of iterations with
the increase in the total numbers of subdomains. This increase can be justified by the need to exchange infor-
mation between distant subdomains. The use of a coarse mesh facilitates the exchange and, potentially, sta-
bilizes the number of iterations. Our problem, however, is of a mixed elliptic/parabolic type, where the
growth of the linear iterations numbers does not follow exactly the theoretical predictions for elliptical prob-
lems. One consequence of such a deviation is that the growth of the linear iterations numbers is not severe and
an introduction of the traditional coarse space does not seem necessary to attain a good parallel performance.

5. Explicit method

To verify the accuracy of the implicit solution, as well as to compare the parallel performance of the implicit
method, we implement an explicit method, in which the equations for the vorticity and the canonical momen-
tum are first advanced in time and, to guarantee temporal consistency, corresponding equations are solved to
update / and w. For the time integration we use a second-order explicit Adams formulas, albeit modified to
allow for the adaptive time stepping, in which the time step Dt is determined by the CFL condition. In our
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current implementation the CFL condition is estimated based on the maximum speed of the signal propaga-
tion on a spatial mesh. In particular, from the values of / we compute the spatial components of the plasma’s
in-plane velocity:
v ¼ ẑ� $/: ð5:1Þ

Then, values of vx and vy which are the in-plane velocity components in x and y directions, respectively, are
used to compute the CFL estimates:
CFLx ¼
vxDt
hx

				
				 and CFLy ¼

vyDt
hy

				
				; ð5:2Þ
where Dt is the proposed time step size and hx and hy are the mesh intervals in x and y directions. The CFL
estimate is then chosen as the maximum value of estimates from (5.2) over all mesh points. Similarly, the Alf-
vén speed-based CFL estimates are used for the in-plane values of the magnetic field, which relate to w values
via
B? ¼ $w� ẑ: ð5:3Þ

If the computed CFL number is
CFL < 0:9; ð5:4Þ

then the time step size of Dt is accepted and the temporal updates (the second-order explicit Adams), using the
same notations as in (3.15), are computed by
Ukþ1
i;j ¼ Uk

i;j þ Dt
3

2
Rk

Uði; jÞ �
1

2
Rk�1

U ði; jÞ
� �

;

F kþ1
i;j ¼ F k

i;j þ Dt
3

2
Rk

F ði; jÞ �
1

2
Rk�1

F ði; jÞ
� �

:

ð5:5Þ
Otherwise, the time step size Dt is reduced until (5.4) is satisfied. Eqs. (5.5) are, in fact, used if no time step
resize is required. However, if the time step size needs to be reduced, then the following equations are used:
Ukþ1
i;j ¼ Uk

i;j þ DtRk
U ði; jÞ þ

ðDtÞ2

2Dt1

ðRk
U ði; jÞ � Rk�1

U ði; jÞÞ;

F kþ1
i;j ¼ F k

i;j þ DtRk
F ði; jÞ þ

ðDtÞ2

2Dt1

ðRk
F ði; jÞ � Rk�1

F ði; jÞÞ;
ð5:6Þ
where Dt1 is the size of the previous time step and Dt 6¼ Dt1. Eqs. (5.6) become Eqs. (5.5) assuming Dt ¼ Dt1.
After the time advancement is done, two linear equations in (3.15) are solved. In the linear solves, one-level,

right-sided restricted additive Schwarz preconditioner with LU on all subdomains is used and the precondi-
tioned systems are solved with GMRES.

We mention that the matrix–vector products in the explicit method can be computed faster in the case of
the tensor product grid. In our implementation, however, we assume that the mesh is unstructured and there-
fore do not exploit special grid properties.

6. Numerical experiments

We use the Portable Extensible Toolkit for Scientific computation (PETSc), developed at Argonne National
Laboratory [1], for our implementations of the algorithms discussed in previous sections. The codes are writ-
ten in a hostless manner and allow easy switching between different numbers of processors. Each processor is
assigned one subdomain, and the information pertaining to the interior of a subdomain is uniquely owned by
that processor. In the implicit algorithm implementation, the processor stores subvectors and a block of the
Jacobian matrix associated with an extended subdomain. At the beginning of every nonlinear iteration, local
blocks of the Jacobian, as well as the preconditioning matrices, are computed. The preconditioning matrices
are factored, and the upper and lower triangular parts are stored. After a solution of each subproblem is
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obtained, those portions that lie within the overlapping regions are sent to neighboring processors to complete
collective operations. Participating processors communicate with each other by message passing using MPI
[20].

Similarly in the explicit implementation, each processor stores subvectors and blocks of linear operators
associated with the linear systems. Subtracting the nonlinear solver functionality from the implicit implemen-
tation discussed above, the remaining procedures are identical in both implicit and explicit implementations.
Testing platforms include a beowulf cluster and an IBM BlueGene/L system.

To illustrate the model behavior, we choose nominal values of the inertial skin depth de ¼ 0:08 and the ion
sound Larmor radius qs ¼ 0:24. The normalized resistivity and viscosity are g ¼ 10�3 and m ¼ 10�3, respec-
tively. The time in the system is normalized to the Alfvén time sA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnmi

p
lx=By0, where By0 is the character-

istic magnitude of the equilibrium magnetic field and lx is the macroscopic scale length [19]. The
computational domain X is uniformly partitioned into rectangular meshes up to 1980� 1980 in size. The stop-
ping conditions for the iterative processes are given as follows:

	 relative reduction in the nonlinear solve: kGðEkÞk 6 10�7kGðE0Þk,
	 absolute tolerance in the nonlinear solve: kGðEkÞk 6 10�7,
	 relative reduction in the Jacobian solve: krkk 6 10�10kr0k,
	 absolute tolerance in the Jacobian solve: krkk 6 10�7,
	 GMRES restart value: 30.
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Fig. 3. Contour plots of / (a), w (b), U (c), and F (d). The results are obtained on 1980� 1980 mesh, Dt ¼ 1:0sA, time t ¼ 100sA, g ¼ 10�3,
m ¼ 10�3, implicit time stepping.
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Fig. 4. Contour plots of / (a), w (b), U (c), and F (d). The results are obtained on 1980� 1980 mesh, Dt ¼ 1:0sA, time t ¼ 200sA, g ¼ 10�3,
m ¼ 10�3, implicit time stepping.
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The same stopping conditions are used for the explicit runs except, of course, for the nonlinear solver
parameters.

Typical solutions are shown in Figs. 3–5 at simulated times t ¼ 100sA, t ¼ 200sA and t ¼ 290sA, respectively,
and corresponding current density contours are given in Fig. 6. The initial perturbation in / produces a fea-
ture-rich behavior in w, U, and F. The four variables in the system evolve at different rates: / and w evolve at a
slower rate than F and U. For g ¼ 10�3 and m ¼ 10�3 we observe an initial slow evolution of the four fields and
the current density profiles up to time 100sA and the solution blows up at time near 290sA. In the middle of the
domain the notorious ‘‘X-point’’ is developed, as can be seen in the F contours, where the magnetic flux is
reconnected. Similar reconnection areas are developed on the boundaries of the domain due to the periodicity
of boundary conditions and the shape of the initial / perturbation. In the reconnection regions sharp current
density peaks Fig. 7a are formed. In Fig. 7b a time evolution of the maximum of the absolute value of current
density is shown. The value of log10jjjmax is plotted as a function of time given in the Alfén units. We can see
that given g ¼ m ¼ 10�3 for the normalized resistivity and viscosity, the current density peak height increases
by several orders of magnitude over the time period of about 300sA. At time 280sA the system is ushered into a
highly nonlinear phase of evolution, which is characterized by the fast growth of current density peaks and
rapid topological transformations of the current density surface. The smooth profiles of the current density
surface split into sharp, teeth-like features in the x-direction, while still preserving the smooth profile in the
y-direction. Fig. 8 helps to illustrate the system’s behavior. Eventually, as the numerical time integration pro-
ceeds further into the highly nonlinear phase, the implicit algorithm encounters convergence difficulties. The
100 200 300
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explicit method also experiences problems in the highly nonlinear phase of evolution at about the same sim-
ulated time. The CFL-based time step size has to be continuously reduced to the point, where further time
integration becomes impractical.

The onset time of the highly nonlinear phase as well as the exact features of current density surfaces depend
strongly on the physical parameters. The ratio qs=de effectively dominates the behavior of the system. The lar-
ger the ratio is, the faster it becomes nonlinear and the harder it is to solve. For qs=de ¼ 1:0, reducing the val-
ues of normalized resistivity g and viscosity m prolongs the linear evolution phase. As the ratio is increased, the
dependence on g and m values becomes non-monotonic and further studies are needed in order to fully char-
acterize the details of the system’s evolution. Keeping the qs=de ¼ 3:0 and changing the values for resistivity
and viscosity allow additional insight into the processes taking place in the system. As can be observed in
Fig. 9a, where the log10jjjmax is plotted for different values for resistivity and viscosity, while keeping the
qs=de constant, and Fig. 9b, where the log10jjjmax is plotted for different ratios qs=de, while keeping values
for resistivity and viscosity constant at g ¼ m ¼ 10�2, there is evidence to support the claim that the system
has a pseudo steady-state solution for g ¼ m ¼ 10�2, where only minor changes occur after simulated time
200sA. However, no pseudo steady-state solutions have been observed for other values of g and m.

Using the nominal values of g ¼ 10�3, m ¼ 10�3 and qs=de ¼ 3:0, we compare solutions obtained by our
implicit method with these obtained with the explicit method. Fig. 10 shows that the third-order implicit
method allows for much larger time steps and produces a solution that is very close to the solution obtained
with the explicit algorithm, where the size of the time step is determined by the CFL constraint. Fig. 11, where
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compute times are plotted for both explicit and implicit methods using different meshes and varying numbers
of processors, compares the performance of the implicit algorithm to the explicit one.

Next, we look at some of the machine-dependent properties of the algorithm. Our main focus is on the com-
pute time scalability, which is an important quality in evaluating parallel algorithms. Again, the nominal val-
ues for physical parameters are chosen for our experiments. Table 1 shows parallel performance results
obtained at t ¼ 100sA, t ¼ 200sA and t ¼ 280sA. The restart sequence allows runs at specified simulated times,
while preserving the temporal discretization order. For instance, in the top part of Table 1 the code is restarted
at t ¼ 100sA and run for 10 time steps of size Dt ¼ 1:0sA to stop at t ¼ 110sA. The compute time as well as
numbers of linear and nonlinear iterations are recorded. In these experiments the number of nonlinear func-
tion evaluations coincides with the number of nonlinear iterations. Similar techniques are also used at
t ¼ 200sA and t ¼ 280sA. The restarting functionality allows code runs with varying number of processors.
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For a given number of subdomains, the inter-domain overlapping size is chosen to minimize the computing
time. That is, referring again to Table 1, in the case of np ¼ 900 at t ¼ 280sA the inter-domain overlap d ¼ 13
results in the compute time of 742.8 s, while larger and smaller overlap sizes result in longer compute times.
This optimal overlap size varies for different numbers of subdomains effectively ensuing a range of the over-
lapping sizes d 2 ½7; 16�.

We show the parallel speedup curves in Fig. 12, where the speedup value is calculated as tð225Þ=tðnpÞ, which
gives a ratio of time needed to solve the problem with 225 processors to the time needed to solve the problem
with np processors on 1980� 1980 mesh. A comparison to the ideal speedup is made in every plot. The
speedup plots are reported at simulated times t ¼ 100sA, t ¼ 200sA and t ¼ 280sA. It is observed that the com-
pute time scalability deteriorates as the problem becomes more and more nonlinear. Indeed, at t ¼ 100sA the
speedup is nearly linear. However, for t ¼ 200sA and t ¼ 280sA the experimental speedup becomes sublinear
for np > 400. Some of the speedup degradation can be attributed to the insufficient problem size pointing



Table 1
Scalability with respect to the number of subdomains, one-level algorithm, 1980� 1980 mesh, LU factorization for all subproblems,
Dt ¼ 1:0sA, 10 time steps taken at simulation times t ¼ 100sA, t ¼ 200sA and t ¼ 280sA

np Compute time (s) Total nonlinear iterations Linear/nonlinear d

t ¼ 100sA

225 716.8 10 42.2 9
324 457.8 10 46.1 9
400 342.3 10 56.0 7
484 284.7 10 56.4 8
900 151.7 10 63.0 9

1936 101.0 10 96.5 10
2025 90.8 10 98.4 9

t ¼ 200sA

225 965.5 11 65.6 12
324 754.3 12 53.6 12
400 465.7 10 68.7 13
484 427.8 10 74.0 15
900 276.8 12 67.7 16

1936 218.6 14 162.4 13
2025 189.9 13 149.5 13

t ¼ 280sA

225 2473.1 24 113.5 12
324 1691.9 24 127.7 12
400 1359.6 24 135.1 12
484 1185.0 25 141.3 11
900 742.8 25 181.0 13

1936 514.8 27 226.6 13
2025 504.8 26 244.3 13

For every global domain partition the inter-domain overlap d 2 ½7; 16�, such that the compute time is minimized over the range of test
cases, where the d 2 ½5; 20�. Physical parameters are given as follows: g ¼ m ¼ 10�3, de ¼ 0:08 and qs ¼ 0:24. The measurements are
conducted with the number of processors np ¼ 225; 324; 400; 484; 900; 1936; 2025 and each processor is assigned one subdomain.
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out that the problems sizes about 15M unknowns are not large enough for np > 1000 and the communication
cost takes its toll on the overall performance. Larger problem sizes may sufficiently improve speedup values.

7. Conclusions and future work

A parallel, nonlinearly implicit method is used for solving a model MHD problem. The proposed fully cou-
pled implicit scheme with the third-order temporal discretization allows much larger time steps than the expli-
cit method, while still preserving the solution accuracy. Moreover, the fully coupled implicit scheme
demonstrates superior compute time performance when compared to the explicit scheme. This performance
of the implicit method is attained on fine meshes with a large number of processors. Even though the numer-
ical experiments are carried out on structured meshes, we do not use any special algorithms that take an
advantage of the tensor product nature of the meshes for the explicit and the implicit methods. The extension
of the algorithms to unstructured meshes and to three-dimensional space is straightforward. It is also observed
that the one-level Schwarz preconditioner is sufficient for times up to t ¼ 150sA, where the execution time
speedup is nearly perfect (Fig. 12a) and the deterioration of iteration numbers is mild. However, for the latter
half of the simulation (150sA � 300sA), the one-level method needs some improvement.

Future continuation of this work may include solutions of the MHD problem on finer meshes with a larger
number of processors and with multilevel versions of the algorithm. Longer time integration with various g
and m values, as well as higher qs to de ratios, may be helpful in the further understanding of the fully coupled
implicit algorithm for the numerical solutions of MHD problems.
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Fig. 12. Speedup curves tðnp ¼ 225Þ=tðnpÞ as compared to the ideal speedup for 1980� 1980 mesh, LU factorization for all subproblems,
Dt ¼ 1:0sA, 10 time steps at times t ¼ 100sA (a), t ¼ 200sA (b) and t ¼ 280sA (c). Physical parameters are g ¼ m ¼ 10�3, de ¼ 0:08 and
qs ¼ 0:24. The straight line in the graphs shows the ideal speedup.
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The importance of mesh adaptivity in resolving the near singular behavior of the current density in the final
stages of the simulation has been quantified in [17] for the case of h-type Cartesian adaptive mesh refinement.
We plan to extend our fully implicit parallel approach to r-type adaptive mesh refinement, by drawing points
into the near singular layer and introducing additional metric terms into the governing equations, without
changing the logical organization of the data or load balancing.
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